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Disclaimer

The findings and conclusions in this presentation 
are those of the authors and should not be 
construed to represent any official USDA, or U.S. 
Government determination or policy
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Outline
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Census of Agriculture

Every five years, USDA’s National Agricultural Statistics 
Service (NASS) conducts the U.S. Census of Agriculture

• The Census provides a detailed picture of U.S. farms, 
ranches and the people who operate them

• It is the only source of uniform, comprehensive agricultural 
data for every state and county in the United States

• NASS makes Census data publicly available only as 
summary statistics

• Record-level information should be provided and 
disclosure of the confidential information should be 
averted
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Goal of the research

• Problem: To provide detailed information based on the 
Census data

• Constraint: To avoid the disclosure of the confidential 
information

• Solution: A modified or synthetic dataset that preserves the 
internal relationship of the original dataset

• Previous approaches (Rubin, 1993; Reiter, 2005a,b,c; Paiva
et al., 2014; Drechsler and Reiter, 2009): 
– Synthetic data distributions generated from models
– Pooled or near-neighbors, used as exchangeable observations
– Inter-changes of data elements among units

• The trade-off for synthetic data is disclosure protection vs 
preservation of data complexity
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Motivation of Generative 
Adversarial Network (GAN)

Idea:
• To preserve finer internal structures
• To duplicate statistical properties with the original dataset

Approach: 
• To use deep learning networks to synthesize 
• To revise until synthetic data cannot be distinguished from 

the original data

Solution: Pair of networks
• Generative network (G-network) creates record-level 

synthetic data
• Discriminative network (D-network) distinguishes real data 

from the synthetic
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Generative Adversarial Network (GAN)

GAN (Goodfellow et al., 2014) consists of two neural networks that 
train simultaneously and “compete” with each other

• G-network takes in random numbers and returns record-level 
synthetic data

• The generated synthetic data concatenated with the real data 
are fed into the D-network

• A D-network learns to distinguish real data from synthetic data
• Parameters of G-network are updated to “fool” the 

discriminator

Iterate
• Process stops when the G-network’s output (synthetic data) 

can’t be distinguished by D-network from the real population
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Two utility measures

Two utility measures are used adapted from Woo et al. (2009)
Propensity score

• Assume: Original population and synthetic population have the same 
size

• Original records labeled 0, synthetic records labeled 1
• Propensity score for each record is generated by a model with 

response either 0 or 1

𝑈𝑝 = 1 −
1

𝑁
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𝑁

(ෝ𝑝𝑖 − 𝑐)2

𝑈𝑝: Propensity utility score
N: Total number of records
ෝ𝑝𝑖: Estimated propensity score for unit i
c: 0.5

• Completely indistinguishable when 𝑈𝑝 → 1, otherwise → 0.75
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Two utility measures - continued

Clustering Score Measure
• Assume: Original population and synthetic population have the same size
• All the clusters are equally important

𝑈𝑐 = 1 −
1
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− 𝑐)2

𝑈𝑐: Clustering utility score
G: Total number of clusters
𝑛𝑖:Number of observations in the i-th cluster
𝑛𝑖𝑜: Number of original observations in the i-th cluster
𝑤𝑖: 1
c: 0.5
• Completely indistinguishable when 𝑈𝑐 → 1, otherwise → 0.75



10

Evaluation of identification 

disclosure risk
Disclosure risk measure using neighborhood-based 
approach adapted from Hu and Savitsky (2019) 

𝑆𝑟 =
1

𝑁
෍

𝑖=1

𝑁

𝐼𝑖

𝑆𝑟: Risk score

N: Total number of records

𝐼𝑖: 1 if the i-th synthetic record lies in the 10-neighbors of 
the i-th original record, otherwise 0

• Completely distinguishable when 𝑆𝑟 → 0, otherwise →
1
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Pilot experiment

• A subset of 2012 Census of Agriculture dataset

– One million records

– No missing values

– A subset of items selected 

o Total Land in Farms

o Total Value Production

o State (State id)

oCounty (County id)

• Rescale to -1 and 1
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Pilot experiment - continued

• A GAN is trained on the subset of one million records 
dataset considering the loss function
– In G-network

• The cross entropy to penalize the output from G-network classified as 
synthetic by D-network

• First, and second moments of the original distribution added to the 
loss function

– In D-network
• The cross entropy to penalize wrongly assigning the output from G-

network to real, and real to synthetic 

• Utility measures are calculated to evaluate the synthetic 
population

• Evaluation of identification disclosure risk measure is 
calculated
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Result 

Original Distribution

Synthetic Distribution
Total Land in Farms

Total Value Production
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Result - continued

Propensity Score Measure: 𝑈𝑝 = 0.97 → 1

Clustering Score Measure:

• G =200,  𝑈𝑐 = 0.92 → 1

Risk Score Measure: 𝑆𝑟 = 0.02 → 0



15

Conclusion

• GAN worked well for generating synthetic 
population for two continuous Census of 
Agriculture variables in terms of 

– Propensity score measure

– Clustering score measure

• GAN failed to capture extreme values

• Identification disclosure risk of synthetic 
population is low
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Future work

• Comprehensive experimentation

– Multiple variables

– Different numbers of clusters 

– Categorical, count, and skewed variables

• Further tuning of GAN’s hyper-parameters 

• Other measures of utility and of identification 
disclosure risks

• Adaptation to better fit distribution extremes
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